Status
Please wait ...
Gene information
General information
TC009836 Gene

The sequence from the iB fragment is matched against the genes from the official gene set. The matche(s) is/are visualizied in a genome browser.

NC_007422.5: 8844936..8847276
Sequence information
Transcripts / Proteins (1) Get mRNA sequence
Get CDS sequence
Get protein sequence
Ortholog information (from OrthoDB)

The information about the homolog genes in Drosophila is provided by OrthoDB http://www.orthodb.org/. The homologs are sorted according to their similarity score. For an orthology statement additional analysis are required.
The data basis for the orthologs is OrthoDB v9 containing OGS3 for Tribolium castaneum and 2015_04 (r6.07) for Drosophila melanogaster.

Closest fly homologs
    TC009836
    Gene ontology

    GO terms for Tribolium

    • {{ goTerm.term }}
      ({{ goTerm.evidence }}){{ goTerm.evidenceTooltip }}
      {{goTerm.showAll ? '[-]' : '[+]'}}
      Status: {{ goTerm.status }}
      Evidence: {{ goTerm.evidence }} ({{ goTerm.evidenceTooltip }})
      Reference: {{ goTerm.referenceText }}
      Quotation: {{ goTerm.quotation }}
      Submitter: {{ goTerm.name }}

    There are no GO terms for Tribolium at the moment. You can help the community by providing some GO terms for this gene.


    GO terms for the homologous Drosophila genes


    Assign a GO term to this Tribolium gene by filling in the fields. Repeat to add several GO terms. Search AmiGO for the correct GO ID. Use only the most specific term - use "graph views" to browse related terms ("child terms" are more specific; the more general "parent" terms will be automatically linked). Only information based on Tribolium data should be entered - do not define terms just based on Drosophila knowledge. We will review this information and submit the annotation to the Gene Ontology consortium.


    Gene
    {{ goGene }}
    The Tribolium gene the GO term is assigned to.
    GO ID *
    {{ blurIdResult }}
    The ID of the GO term you assign to the gene. Please enter only the ID of the GO term with proceeding 'GO:'. This information is mandatory.
    Evidence
    {{ blurEvidenceResult }}
    The evidence code describes with which method the function or location, expressed by the GO term, was show for this gene. Please refer to this page for a definition of the evidence code and a decision tree.
    Reference *
    {{ blurReferenceResult }}
    The reference where the function or location is described for the gene. Please enter a PubMed ID. This information is mandatory.
    Quotation
    If you paste here the relevant section of the reference it is for us a great help to review your annotation. The quotation may be also be displayed to the users of iBeetle-Base.
    Name
    You may enter your name. The contact information can help us to clarify any questions. If you agree, we may show your name on this page to honor your contribution.
    Email
    We will use your email address only for possible questions regarding this annotation. We will never show your address or give it away.
    Publish name
    If you have entered your name and agree by marking the checkbox. we might show your name on this page to honor your contribution.
      {{ unavailableText }}

    * : mandatory fields
    For help on how to submit larger datasets or non experimental data please contact us.
    iBeetle screen iB_08739

    Attention! iBeetle is a first pass screen. Hence, the documented phenotypes need to be confirmed by independent experiments using non-overlapping dsRNA fragments! Phenotypes with a penetrance > 50% are frequently reproduced. See Schmitt-Engel et al. 2015 for details on reproducibility.

    iB sequence
    Phenotype after pupal injection
    Usually 10 injected animals

    Pupal injection procedure

    Day 0: 10 female pupae of the pBA19 strain (muscle enhancer trap line) were injected with dsRNA.

    3 days post injection (dpi): Hatch control: Pupal and adult lethality as well as metamorphosis defects (molting, eclosion) were documented. For mating, 4 males of the black strain were added.

    9 dpi: First egg-lay was collected and incubated for cuticle analysis. Adult lethality and egg production (reduced/ no egg-lay) was documented.

    11 dpi: Second egg-lay was collected and incubated for embryonic muscle analysis. Adult lethality and egg production (reduced/ no egg-lay) were documented.

    Note: The adult morphology was not analyzed systematically at 3/9/11 dpi. Only obvious phenotypes, visible without magnification, have been annotated.

    13 dpi: Egg productivity and Ovary analysis
    The percentage of hatched larvae was documented and not hatched larvae/ eggs were embedded for cuticle analysis (15 dpi). In case of a reduction of egg production, 4 injected females were dissected to analyze the gross morphology of the ovaries.

    14 dpi: Analysis of embryonic musculature and early embryonic development
    Offspring of the injected females (hatched and not hatched larvae/ eggs) were analysed for embryonic lethality and muscle defects.

    15 dpi: Analysis of larval instar 1 cuticle
    Offspring of injected females were analysed and cuticle phenotypes were annotated.

    22 dpi: Stink gland analysis
    Documentation of defects in abdominal and thoracic stink glands (colour, size, content) of the injected femals.

    Terms used in the pupal injection procedure

    larval pantagmatic defects
    At least two tagmata (head, thorax, abdomen or terminus) show similar/ comparable defects.
    empty eggs
    Just empty shells are visible, no cuticle has been developed.
    strong defects
    L1 cuticle larvae which show severe defects. These strong defects are subdivided into three categories
    strongly fragmented (cuticle crumbs)
    No segments or appendages are identifiable, only residues of cuticle and bristles can be identified.
    cuticle remnants (with unidentifiable segments)
    Segments or parts of appendages are recognizable, but identity is not clear.
    cuticle remnants (with some identifiable segments)
    At least one segment or appendage is clearly regonizable.
    number of eggs on slide
    affected embryos usually (not always) do not hatch. Only the not hatched were used for cuticle analysis.
    For the embryonic muscle analysis the hatched as well as the not hatched were analysed.
    total number of affected eggs/embryos/larvae
    Summary of all different phenotypes/ phenotypic series which were annotated.
    inside-out
    The L1 larva shows a partial or complete inversion., e.g. bristles, appendages or parts of the abdominal segments are inverted into the interior of the cuticle.
    starved
    Dissected females show a strong resorption of fatbody predominately in the abdomen and the oogenesis is blocked. These are considered as eventually lethal phenotypes and the blocked oogenesis probably a secondary defect due to starvation.
    eclosion not fulfilled
    The emergence of the adult from the pupa stage is interrupted. This phenotype shows pupal as well as adult features.
    Please see the help page for more information
    Metamorphosis and survival

    Lethality 11 days after pupal injection: 10.0% (includes death as pupa, adult)

    eclosion not fulfilled (with pupal and adult features) - Number of animals showing the phenotype: 1 (3 dpi)
    Days post injection


    Analysis of larval stage 1 cuticle
    number of eggs/embryos/larvae on slide: < 20
    Phenotype after larval injection
    Usually 10 injected animals

    Larval injection procedure

    Day 0: 10 female L5-6 larvae of the D17Xhom strain (females express RFP in the eyes and in the CNS; pupae express GFP in the thorax) were injected with dsRNA.

    11 days post injection (dpi): Pupal morphology Documentation of larval/ pupal death and defects of metamorphosis (eclosion, delayed development). Screening for alterations of pupal head and appendages, pupal thorax, pupal thoracic musculature, pupal legs, pupal wings, pupal abdomen and pupal genital lobes.

    16 dpi: Adult morphology Documentation of larval/ pupal and adult death and defects of metamorphosis (eclosion, delayed development). Screening for alterations of adult head and appendages, adult thorax, adult elytra and hindwings, adult legs and cuticle properties. For mating 4 males of the black strain were added.

    19 dpi: Sieving and egg-lay Documentation of adult lethality and enduring metamorphosis defects.

    22 dpi: Ovary analysis (Fertility) In case of a reduction of egg production 4 females were dissected and the gross morphology of the ovaries were analysed.

    41 dpi: Fertility and stink gland analysis Documentation of defects in abdominal and thoracic stink glands development (colour, size, content) of the injected females. Check for fertility of injected larvae (no or decreased offspring).

    Terms used in the larval injection procedure

    pupal/ adult pantagmatic defects
    At least two tagmata (head, thorax, abdomen or terminus) show similar/ comparable defects.
    pupal molt not fulfilled
    The hatching from the larva to the pupa is interrupted. Either it dies as prepupa or the phenotype shows larval as well as pupal features.
    eclosion not fulfilled
    The emergence of the adult from the pupa stage is interrupted. This phenotype shows pupal as well as adult features.
    starved
    Dissected females show a strong resorption of fatbody predominately in the abdomen and the oogenesis is blocked. These are considered as eventually lethal phenotypes and the blocked oogenesis probably a secondary defect due to starvation.
    Metamorphosis and survival

    Lethalities 11 days after larval injection: % (includes death as larva, prepupa, pupa)
    Lethalities 22 days after larval injection: % (includes death as larva, prepupa, pupa, adult)

    RNAi sequence
    Primers
    Left: Right:
    Protein sequence
    • >TC009836 RA
      MDHIYIGAQ RVGDAQLSL DIESLIVLN VYRIAGNDN 
      IKLRVKILD GGTQGAHVT VDMSRVVHE IVENIPEIA 
      KYCAWPVIV KHNYVIAGL CSVTRQIIK LSEHKKVQK 
      LLGFRDACL MACSESSIW TKFCEVDMI STIKSVVLD 
      PMGHFNGNV FKLPRDLVR FEYHLGQPV RMHNVYKIA 
      REQNKAITN DTPIEKLDL KHTFGEGPF MTLSDVILF 
      SCVQIFMTL FPELKFQDK LPLTLAWYH NMKEMNVNK 
      LKFDLNPLP VEITEVEEP EIVKQSLYT ADPSRYKPE 
      KRIYTKQKD ITNSLRIIN NNHIEIANS LYPYGDEIE 
      FDWSKIPEE ANPMSGALP ENRAYRKCD QLENLAKAV 
      IKLTGGKQM KIVDFCSGS GHLGILLAF LLPQCTIIL 
      VENKELSLV RAKERIEKM NLTNLVILQ SNLDYFVGT 
      FDIGVSLHA CGVATDLVI QNCIKNKAH FVCCPCCYG 
      GIHDCYHLT YPRSLEYQR LNMEHKDYL TLAHAADQT 
      HDPNNRKTT QGFVCMDAI DTDRRLYAE SCGYEVHLG 
      KLQPASCTN KNNLLVGIC NG
    CDS sequence
    • >TC009836 RA
      atggaccac atttacatt ggggctcag cgggtgggg 
      gacgcccag ttgtcgctt gatattgag tcgttaatt 
      gtcctcaac gtttataga atcgcaggg aatgataat 
      attaaactt agggttaag atcctcgat ggggggact 
      cagggggcg cacgttacg gtcgacatg tcgcgagtc 
      gtgcacgaa atcgtggaa aatattccc gaaattgcg 
      aaatattgc gcatggccg gtcatcgtc aaacataat 
      tatgtcata gcggggttg tgttcagtc acccgccag 
      attattaaa ttaagcgag cataaaaaa gtccaaaaa 
      ttgttgggg ttcagggat gcgtgtcta atggcgtgt 
      agtgagagt tcaatttgg acgaaattc tgcgaagtc 
      gatatgatt tcaaccatc aaaagtgtt gttctagac 
      ccgatgggt catttcaat ggtaacgtt tttaaatta 
      ccacgggac ttggtccgg ttcgagtac cacctagga 
      caaccggta cgtatgcac aatgtttac aaaatcgca 
      agagaacaa aataaagca ataacaaac gacacccca 
      atcgaaaaa ttagacctc aagcacacg ttcggcgaa 
      ggccctttt atgacgctt tccgacgtt attttgttt 
      tcttgcgtc caaattttc atgacgttg tttcccgaa 
      ctcaaattt caagacaag ttaccactg accctagcc 
      tggtaccac aatatgaaa gaaatgaac gtaaacaaa 
      ctaaaattt gatttaaat ccacttccg gttgaaata 
      accgaagtc gaggaaccg gaaatcgtg aaacagagt 
      ctctacaca gctgatccc tcgcgctac aagccggaa 
      aaacgcatc tacactaaa caaaaagac ataacaaac 
      tcgctacga atcataaat aataaccac atcgaaatt 
      gcaaattct ctgtacccg tacggtgac gaaattgag 
      tttgattgg tcgaaaatc cccgaggaa gcgaatcca 
      atgagtggc gccctcccg gaaaaccgc gcgtaccgg 
      aaatgcgac caactggag aacttggcc aaagccgtg 
      attaaactc accggaggc aaacaaatg aaaattgtc 
      gatttttgt tccgggagt ggtcatttg ggtatcttg 
      cttgcgttc ctcctgcct cagtgtaca ataatcctg 
      gtcgaaaac aaggaattg tcactcgtg cgggctaag 
      gaacgcatc gagaaaatg aatttgact aatttggtg 
      attttgcaa tcgaatttg gattatttt gtcggtact 
      ttcgatatt ggcgtgtcg ttgcatgcg tgtggcgtc 
      gcgacggat ctggtgatt caaaattgt atcaaaaat 
      aaggcgcat ttcgtgtgt tgtccgtgt tgttacggt 
      gggatacac gattgttac catttaacg tatccgagg 
      agtttggag tatcagagg ttgaatatg gaacataag 
      gattatctg acgttggcg catgccgca gatcagaca 
      cacgacccg aataatagg aagacgacg caagggttt 
      gtgtgtatg gatgcgatt gatacggat aggcggttg 
      tatgcggaa agttgcggg tatgaggtg catttaggg 
      aagttgcaa cccgcttcg tgcacgaat aaaaataat 
      ttgttagtt ggaatttgt aacggatag
    mRNA sequence
    • >TC009836 RA
      cctaaccta tcaaaaatc aaaatcgtc gcctccgca 
      aacagctcc attcctcac caccaccga ctatgatcg 
      aatcctgcc ccaaaaagc gcatgttac tcggcatca 
      cctgccttg gcgtcttaa ccgttctag tcttaatca 
      ttgagtccc actggacgg actcacggg ggcccaccc 
      gcaaacgca ccttccccg tcgagcaga actcaacgt 
      gctgggaga aggaaaaat acgaaatca tcaaagact 
      gcgaaccgt gctcagcct ttgaaatcg ccagtcaga 
      gcgtggggg tctgcatcc acacccatt tcaaggaag 
      tcctgaggt gcgccagtg gcgagaccg tgacccgga 
      gctgcgacc gcgccgcct tcatcgacg agagggcct 
      tttggagat ttgaaggtt ttatgtttg tttgcgcta 
      ttatctcaa ctctttgcg tctccgccc ggaaaaggg 
      tgctgaaca agcggatgc tgcaaaggg tgcagaggc 
      aactagcca actgtgttt aatcatgga ccacattta 
      cattggggc tcagcgggt gggggacgc ccagttgtc 
      gcttgatat tgagtcgtt aattgtcct caacgttta 
      tagaatcgc agggaatga taatattaa acttagggt 
      taagatcct cgatggggg gactcaggg ggcgcacgt 
      tacggtcga catgtcgcg agtcgtgca cgaaatcgt 
      ggaaaatat tcccgaaat tgcgaaata ttgcgcatg 
      gccggtcat cgtcaaaca taattatgt catagcggg 
      gttgtgttc agtcacccg ccagattat taaattaag 
      cgagcataa aaaagtcca aaaattgtt ggggttcag 
      ggatgcgtg tctaatggc gtgtagtga gagttcaat 
      ttggacgaa attctgcga agtcgatat gatttcaac 
      catcaaaag tgttgttct agacccgat gggtcattt 
      caatggtaa cgtttttaa attaccacg ggacttggt 
      ccggttcga gtaccacct aggacaacc ggtacgtat 
      gcacaatgt ttacaaaat cgcaagaga acaaaataa 
      agcaataac aaacgacac cccaatcga aaaattaga 
      cctcaagca cacgttcgg cgaaggccc ttttatgac 
      gctttccga cgttatttt gttttcttg cgtccaaat 
      tttcatgac gttgtttcc cgaactcaa atttcaaga 
      caagttacc actgaccct agcctggta ccacaatat 
      gaaagaaat gaacgtaaa caaactaaa atttgattt 
      aaatccact tccggttga aataaccga agtcgagga 
      accggaaat cgtgaaaca gagtctcta cacagctga 
      tccctcgcg ctacaagcc ggaaaaacg catctacac 
      taaacaaaa agacataac aaactcgct acgaatcat 
      aaataataa ccacatcga aattgcaaa ttctctgta 
      cccgtacgg tgacgaaat tgagtttga ttggtcgaa 
      aatccccga ggaagcgaa tccaatgag tggcgccct 
      cccggaaaa ccgcgcgta ccggaaatg cgaccaact 
      ggagaactt ggccaaagc cgtgattaa actcaccgg 
      aggcaaaca aatgaaaat tgtcgattt ttgttccgg 
      gagtggtca tttgggtat cttgcttgc gttcctcct 
      gcctcagtg tacaataat cctggtcga aaacaagga 
      attgtcact cgtgcgggc taaggaacg catcgagaa 
      aatgaattt gactaattt ggtgatttt gcaatcgaa 
      tttggatta ttttgtcgg tactttcga tattggcgt 
      gtcgttgca tgcgtgtgg cgtcgcgac ggatctggt 
      gattcaaaa ttgtatcaa aaataaggc gcatttcgt 
      gtgttgtcc gtgttgtta cggtgggat acacgattg 
      ttaccattt aacgtatcc gaggagttt ggagtatca 
      gaggttgaa tatggaaca taaggatta tctgacgtt 
      ggcgcatgc cgcagatca gacacacga cccgaataa 
      taggaagac gacgcaagg gtttgtgtg tatggatgc 
      gattgatac ggataggcg gttgtatgc ggaaagttg 
      cgggtatga ggtgcattt agggaagtt gcaacccgc 
      ttcgtgcac gaataaaaa taatttgtt agttggaat 
      ttgtaacgg ataggtatt tatttgtaa ctaggttgt 
      agattgaat ggttgtatt tttatacta tgtgtaaaa 
      atttttgta aataaatgt tagataaga gc
    The data is licensed under a Creative Commons Attribution 3.0 Unported License. (CC-BY) CC-BY