Status
Please wait ...
Gene information
General information
TC014291 Gene

The sequence from the iB fragment is matched against the genes from the official gene set. The matche(s) is/are visualizied in a genome browser.

NC_007420.3: 8508685..8510636
Sequence information
Transcripts / Proteins (1) Get mRNA sequence
Get CDS sequence
Get protein sequence
Ortholog information (from OrthoDB)

The information about the homolog genes in Drosophila is provided by OrthoDB http://www.orthodb.org/. The homologs are sorted according to their similarity score. For an orthology statement additional analysis are required.
The data basis for the orthologs is OrthoDB v9 containing OGS3 for Tribolium castaneum and 2015_04 (r6.07) for Drosophila melanogaster.

Closest fly homologs
    TC014291
    Gene ontology

    GO terms for Tribolium

    • {{ goTerm.term }}
      ({{ goTerm.evidence }}){{ goTerm.evidenceTooltip }}
      {{goTerm.showAll ? '[-]' : '[+]'}}
      Status: {{ goTerm.status }}
      Evidence: {{ goTerm.evidence }} ({{ goTerm.evidenceTooltip }})
      Reference: {{ goTerm.referenceText }}
      Quotation: {{ goTerm.quotation }}
      Submitter: {{ goTerm.name }}

    There are no GO terms for Tribolium at the moment. You can help the community by providing some GO terms for this gene.


    GO terms for the homologous Drosophila genes


    Assign a GO term to this Tribolium gene by filling in the fields. Repeat to add several GO terms. Search AmiGO for the correct GO ID. Use only the most specific term - use "graph views" to browse related terms ("child terms" are more specific; the more general "parent" terms will be automatically linked). Only information based on Tribolium data should be entered - do not define terms just based on Drosophila knowledge. We will review this information and submit the annotation to the Gene Ontology consortium.


    Gene
    {{ goGene }}
    The Tribolium gene the GO term is assigned to.
    GO ID *
    {{ blurIdResult }}
    The ID of the GO term you assign to the gene. Please enter only the ID of the GO term with proceeding 'GO:'. This information is mandatory.
    Evidence
    {{ blurEvidenceResult }}
    The evidence code describes with which method the function or location, expressed by the GO term, was show for this gene. Please refer to this page for a definition of the evidence code and a decision tree.
    Reference *
    {{ blurReferenceResult }}
    The reference where the function or location is described for the gene. Please enter a PubMed ID. This information is mandatory.
    Quotation
    If you paste here the relevant section of the reference it is for us a great help to review your annotation. The quotation may be also be displayed to the users of iBeetle-Base.
    Name
    You may enter your name. The contact information can help us to clarify any questions. If you agree, we may show your name on this page to honor your contribution.
    Email
    We will use your email address only for possible questions regarding this annotation. We will never show your address or give it away.
    Publish name
    If you have entered your name and agree by marking the checkbox. we might show your name on this page to honor your contribution.
      {{ unavailableText }}

    * : mandatory fields
    For help on how to submit larger datasets or non experimental data please contact us.
    iBeetle screen iB_02272

    Attention! iBeetle is a first pass screen. Hence, the documented phenotypes need to be confirmed by independent experiments using non-overlapping dsRNA fragments! Phenotypes with a penetrance > 50% are frequently reproduced. See Schmitt-Engel et al. 2015 for details on reproducibility.

    iB sequence
    Phenotype after pupal injection
    Usually 10 injected animals

    Pupal injection procedure

    Day 0: 10 female pupae of the pBA19 strain (muscle enhancer trap line) were injected with dsRNA.

    3 days post injection (dpi): Hatch control: Pupal and adult lethality as well as metamorphosis defects (molting, eclosion) were documented. For mating, 4 males of the black strain were added.

    9 dpi: First egg-lay was collected and incubated for cuticle analysis. Adult lethality and egg production (reduced/ no egg-lay) was documented.

    11 dpi: Second egg-lay was collected and incubated for embryonic muscle analysis. Adult lethality and egg production (reduced/ no egg-lay) were documented.

    Note: The adult morphology was not analyzed systematically at 3/9/11 dpi. Only obvious phenotypes, visible without magnification, have been annotated.

    13 dpi: Egg productivity and Ovary analysis
    The percentage of hatched larvae was documented and not hatched larvae/ eggs were embedded for cuticle analysis (15 dpi). In case of a reduction of egg production, 4 injected females were dissected to analyze the gross morphology of the ovaries.

    14 dpi: Analysis of embryonic musculature and early embryonic development
    Offspring of the injected females (hatched and not hatched larvae/ eggs) were analysed for embryonic lethality and muscle defects.

    15 dpi: Analysis of larval instar 1 cuticle
    Offspring of injected females were analysed and cuticle phenotypes were annotated.

    22 dpi: Stink gland analysis
    Documentation of defects in abdominal and thoracic stink glands (colour, size, content) of the injected femals.

    Terms used in the pupal injection procedure

    larval pantagmatic defects
    At least two tagmata (head, thorax, abdomen or terminus) show similar/ comparable defects.
    empty eggs
    Just empty shells are visible, no cuticle has been developed.
    strong defects
    L1 cuticle larvae which show severe defects. These strong defects are subdivided into three categories
    strongly fragmented (cuticle crumbs)
    No segments or appendages are identifiable, only residues of cuticle and bristles can be identified.
    cuticle remnants (with unidentifiable segments)
    Segments or parts of appendages are recognizable, but identity is not clear.
    cuticle remnants (with some identifiable segments)
    At least one segment or appendage is clearly regonizable.
    number of eggs on slide
    affected embryos usually (not always) do not hatch. Only the not hatched were used for cuticle analysis.
    For the embryonic muscle analysis the hatched as well as the not hatched were analysed.
    total number of affected eggs/embryos/larvae
    Summary of all different phenotypes/ phenotypic series which were annotated.
    inside-out
    The L1 larva shows a partial or complete inversion., e.g. bristles, appendages or parts of the abdominal segments are inverted into the interior of the cuticle.
    starved
    Dissected females show a strong resorption of fatbody predominately in the abdomen and the oogenesis is blocked. These are considered as eventually lethal phenotypes and the blocked oogenesis probably a secondary defect due to starvation.
    eclosion not fulfilled
    The emergence of the adult from the pupa stage is interrupted. This phenotype shows pupal as well as adult features.
    Please see the help page for more information
    Metamorphosis and survival

    Lethality 11 days after pupal injection: 30.0% (includes death as pupa, adult)

    pupa eclosion not fulfilled (died as pupa) - Number of animals showing the phenotype: 1 (3 dpi)
    Days post injection


    eclosion not fulfilled (with pupal and adult features) - Number of animals showing the phenotype: 1 (3 dpi)
    Days post injection


    adult lethality - Number of animals showing the phenotype: 1 (9 dpi)
    Days post injection


    Analysis of larval stage 1 cuticle
    number of eggs/embryos/larvae on slide: < 50
    Phenotype after larval injection
    Usually 10 injected animals

    Larval injection procedure

    Day 0: 10 female L5-6 larvae of the D17Xhom strain (females express RFP in the eyes and in the CNS; pupae express GFP in the thorax) were injected with dsRNA.

    11 days post injection (dpi): Pupal morphology Documentation of larval/ pupal death and defects of metamorphosis (eclosion, delayed development). Screening for alterations of pupal head and appendages, pupal thorax, pupal thoracic musculature, pupal legs, pupal wings, pupal abdomen and pupal genital lobes.

    16 dpi: Adult morphology Documentation of larval/ pupal and adult death and defects of metamorphosis (eclosion, delayed development). Screening for alterations of adult head and appendages, adult thorax, adult elytra and hindwings, adult legs and cuticle properties. For mating 4 males of the black strain were added.

    19 dpi: Sieving and egg-lay Documentation of adult lethality and enduring metamorphosis defects.

    22 dpi: Ovary analysis (Fertility) In case of a reduction of egg production 4 females were dissected and the gross morphology of the ovaries were analysed.

    41 dpi: Fertility and stink gland analysis Documentation of defects in abdominal and thoracic stink glands development (colour, size, content) of the injected females. Check for fertility of injected larvae (no or decreased offspring).

    Terms used in the larval injection procedure

    pupal/ adult pantagmatic defects
    At least two tagmata (head, thorax, abdomen or terminus) show similar/ comparable defects.
    pupal molt not fulfilled
    The hatching from the larva to the pupa is interrupted. Either it dies as prepupa or the phenotype shows larval as well as pupal features.
    eclosion not fulfilled
    The emergence of the adult from the pupa stage is interrupted. This phenotype shows pupal as well as adult features.
    starved
    Dissected females show a strong resorption of fatbody predominately in the abdomen and the oogenesis is blocked. These are considered as eventually lethal phenotypes and the blocked oogenesis probably a secondary defect due to starvation.
    Metamorphosis and survival

    Lethalities 11 days after larval injection: 30.0% (includes death as larva, prepupa, pupa)
    Lethalities 22 days after larval injection: 30.0% (includes death as larva, prepupa, pupa, adult)

    larva lethality - Number of animals showing the phenotype: 3 (11 dpi)
    Days post injection


    RNAi sequence
    Primers
    Left: Right:
    Protein sequence
    • >TC014291 RA
      MMFENGSLK RKSCELEPG EVENESDEP KLKLLCVET 
      DVEAPNLES TSQNASSET SKEPGLEIA NEEPTSETF 
      IEQKSDTTV VVEETPPTP NEESKSETL IEESKSETL 
      IEESKSETV IVEETVLCP TVGTEEAKT ETPVEEKSE 
      AITVEESIL SPCISITFH TDVAADLYK TRFLEFIST 
      FPELQARLE NDLFFEVYR SENIPSSVT DTLKKRKKH 
      SKVKKELFV VDAKPSPNA DGTHLRYTT KFVINTEET 
      VEDDTKPAK SVMSCFNCG DAHSLKDCP RPRDHAKIN 
      AAKQKKFPT LGRYHSDDG QRFAHLVPG KISSELRRA 
      LGLYRDEAP HYVYLMRSM GYPPGWLEE AKIEHSNLD 
      MFDIDGKNV RGKARKRGL DETKIIDYP GFNVPFENG 
      IVDDYHKYG VAPYSDVFN KKAMIDVYN KLYVQQEDD 
      LEACDMDLD QSFEEDPKI MSQPERNSP SLVDLEQQK 
      QQLLEELND EPKDVEKSD LDKEFLAVK ESCFGTPIL 
      KSGSPYSTL PDPDKFSKD VSPVINFEN LPNSTGKYE 
      QLSDVLQKV RDTLKKKQN T
    CDS sequence
    • >TC014291 RA
      atgatgttt gaaaatggt tctttgaaa cgaaaaagc 
      tgcgaatta gagccagga gaggtcgaa aatgagtcg 
      gatgaaccg aaactgaaa ctcctttgt gttgaaact 
      gacgttgaa gcccctaac ctagaaagc acaagccaa 
      aacgcctcc tccgaaaca agcaaagag cctgggctg 
      gaaatagcc aacgaagaa ccaacatca gaaacattc 
      attgaacaa aaatcggac actacagtc gtggtggaa 
      gaaacccca ccaacaccc aatgaagag tctaaatca 
      gaaacactc attgaagag tctaaatca gaaacactc 
      attgaagag tctaaatcg gaaacggta attgttgag 
      gaaacggtg ctgtgcccg accgtgggc actgaggaa 
      gctaagaca gaaacaccc gttgaggaa aaatccgaa 
      gcaataact gtggaggaa agcatactg agcccgtgc 
      attagcatc acttttcac accgacgtt gctgcagat 
      ttgtacaaa accagattt ttagaattt ataagcaca 
      tttcctgag ttacaagca cggcttgaa aatgatctc 
      ttctttgag gtttaccga agtgagaat attccaagt 
      agtgtgacc gacactttg aaaaaacga aaaaaacat 
      tcaaaagtg aagaaagag ctgttcgtg gtcgacgcc 
      aagccttcg ccaaacgca gacgggacg catttgcgg 
      tacacgacc aagtttgta ataaacacg gaggaaaca 
      gttgaggat gacacaaag ccggcgaaa agcgtgatg 
      tcatgtttc aactgcgga gatgctcac agtctgaaa 
      gactgtccg cgcccgcga gaccatgcc aaaataaac 
      gcagccaag caaaaaaaa ttcccaacc ttgggtcgg 
      taccattca gatgatggg caaaggttt gcccattta 
      gtgcctggg aaaatttca agcgagttg agacgagcg 
      ttggggctc tacagggat gaggccccc cattacgtt 
      tacctaatg cggagcatg gggtacccc cctggttgg 
      ctggaggag gccaaaatt gaacattcc aaccttgac 
      atgtttgat attgacggg aaaaatgtg cgaggcaaa 
      gcgagaaag cgcggtttg gatgaaacc aaaatcatt 
      gactacccc ggttttaat gtccccttt gagaatgga 
      attgttgat gattatcac aagtatgga gtggctcca 
      tactctgat gttttcaac aaaaaggca atgattgat 
      gtttacaat aaactgtac gtgcaacaa gaagacgac 
      ttggaggct tgtgacatg gatttggac caaagtttt 
      gaggaagat ccgaaaata atgtcacag cctgaaaga 
      aattcgcca tcattggtt gatttagag caacaaaag 
      cagcaattg ctggaggaa ttgaatgat gaacctaag 
      gatgtggaa aagtctgac ttagataag gaattttta 
      gctgtcaaa gaaagttgc ttcgggact cccatactt 
      aaaagtggt tcgccttat tcaacactt cctgatcct 
      gataaattt tctaaagac gtaagtccc gtaatcaat 
      tttgaaaat ttaccaaat tcgactgga aaatatgag 
      caactatcg gatgtttta caaaaagtt agggacact 
      ttaaaaaag aagcagaac acgtaa
    mRNA sequence
    • >TC014291 RA
      tgatattta agataattt aattttttt taaaatgat 
      gtttgaaaa tggttcttt gaaacgaaa aagctgcga 
      attagagcc aggagaggt cgaaaatga gtcggatga 
      accgaaact gaaactcct ttgtgttga aactgacgt 
      tgaagcccc taacctaga aagcacaag ccaaaacgc 
      ctcctccga aacaagcaa agagcctgg gctggaaat 
      agccaacga agaaccaac atcagaaac attcattga 
      acaaaaatc ggacactac agtcgtggt ggaagaaac 
      cccaccaac acccaatga agagtctaa atcagaaac 
      actcattga agagtctaa atcagaaac actcattga 
      agagtctaa atcggaaac ggtaattgt tgaggaaac 
      ggtgctgtg cccgaccgt gggcactga ggaagctaa 
      gacagaaac acccgttga ggaaaaatc cgaagcaat 
      aactgtgga ggaaagcat actgagccc gtgcattag 
      catcacttt tcacaccga cgttgctgc agatttgta 
      caaaaccag atttttaga atttataag cacatttcc 
      tgagttaca agcacggct tgaaaatga tctcttctt 
      tgaggttta ccgaagtga gaatattcc aagtagtgt 
      gaccgacac tttgaaaaa acgaaaaaa acattcaaa 
      agtgaagaa agagctgtt cgtggtcga cgccaagcc 
      ttcgccaaa cgcagacgg gacgcattt gcggtacac 
      gaccaagtt tgtaataaa cacggagga aacagttga 
      ggatgacac aaagccggc gaaaagcgt gatgtcatg 
      tttcaactg cggagatgc tcacagtct gaaagactg 
      tccgcgccc gcgagacca tgccaaaat aaacgcagc 
      caagcaaaa aaaattccc aaccttggg tcggtacca 
      ttcagatga tgggcaaag gtttgccca tttagtgcc 
      tgggaaaat ttcaagcga gttgagacg agcgttggg 
      gctctacag ggatgaggc cccccatta cgtttacct 
      aatgcggag catggggta cccccctgg ttggctgga 
      ggaggccaa aattgaaca ttccaacct tgacatgtt 
      tgatattga cgggaaaaa tgtgcgagg caaagcgag 
      aaagcgcgg tttggatga aaccaaaat cattgacta 
      ccccggttt taatgtccc ctttgagaa tggaattgt 
      tgatgatta tcacaagta tggagtggc tccatactc 
      tgatgtttt caacaaaaa ggcaatgat tgatgttta 
      caataaact gtacgtgca acaagaaga cgacttgga 
      ggcttgtga catggattt ggaccaaag ttttgagga 
      agatccgaa aataatgtc acagcctga aagaaattc 
      gccatcatt ggttgattt agagcaaca aaagcagca 
      attgctgga ggaattgaa tgatgaacc taaggatgt 
      ggaaaagtc tgacttaga taaggaatt tttagctgt 
      caaagaaag ttgcttcgg gactcccat acttaaaag 
      tggttcgcc ttattcaac acttcctga tcctgataa 
      attttctaa agacgtaag tcccgtaat caattttga 
      aaatttacc aaattcgac tggaaaata tgagcaact 
      atcggatgt tttacaaaa agttaggga cactttaaa 
      aaagaagca gaacacgta acaatgcag tacaaaatg 
      ttttgtata taaaattat attgaataa atgtgactt 
      ttacagtgt gtgcatgtg gccatgata gacgtgttt 
      aacctaagt atattgttt ctatgatag tttaaatac 
      aaataaaga tttttacct cga
    The data is licensed under a Creative Commons Attribution 3.0 Unported License. (CC-BY) CC-BY